Home ContactSitemap CAS中文
About Us
Brief Introduction
History
Directors
Organization
Research Groups
Scientific Progress
Seminars
Colloquia
CAS Members
Experts
Faculty
Research Fields
Center for Astro-geodynamics
Astrophysics Division
DRAST (Division of Radio Astronomy Science and Technology )
High Technology Laboratories

Location: Home>Research>Seminars
Black hole accretion in the present-day and early universe
Author:
ArticleSource:
Update time: 2019-01-14
Close
Text Size: A A A
Print

Title: Black hole accretion in the present-day and early universe 

Speaker: Kohei Inayoshi  (KIAA/Peking Univ) 

Time: 10:00 am, January 18 (Friday) 

Location: Lecture Hall, 3rd floor 

Abstract:  

Supermassive black holes (SMBHs) are almost ubiquitously harbored at the centers of massive nearby galaxies. The existence of SMBHs is consistent with the number and energetics of bright quasars, which are associated with efficient gas accretion onto SMBHs. Among them, the SMBH population in the early universe (z>6) provides us an important constraint on their formation process and requires rapid growth of their seeds. In the present-day universe, however only a few percent of SMBHs are observed as luminous active galactic nuclei (AGN). A majority of them are nearly quiescent and known as low luminosity AGN. We study the two different accretion domains performing 1D/2D radiation-hydrodynamical simulations. For the higher-rate case, we find the global accretion solutions from outside the Bondi radius at super-Eddington accretion rates (>500 Mdot_Edd), unimpeded by radiation feedback. We apply this result to SMBHs embedded in protogalaxies and discuss their subsequent growth. For the lower-rate case (< Mdot_Edd), the BH accretion is either suppressed due to convective motion (L<10^-7 L_Edd) or led through a cold, geometrically-thin disk (L~10^-3 L_Edd). The transitional behavior of accreting BHs in galactic nuclei naturally explain (1) the reason for the offset between the observed luminosities and theoretical predictions for nearby quiescent SMBHs, and (2) the conditions to fuel gas into the nuclear SMBH. 

Shanghai Astronomical Observatory, All Rights Reserved
80 Nandan Road, Shanghai 200030, China
Tel: +86-21-64386191 Email:shao@shao.ac.cn